Acta Cryst. (1974). B30, 2064

Hydroxy-16a Prednisolone

PAR O. DIDEBERG, L. DUPONT ET H. CAMPSTEYN

Institut de Physique, Université de Liège au Sart Tilman, B-4000, Liège, Belgique

(Reçu le 8 avril 1974, accepté le 30 avril 1974)

Abstract. $C_{21}H_{28}O_6$, orthorhombic, $P2_12_12_1$, $a = 11\cdot279$ (2), $b = 20\cdot452$ (4), $c = 8\cdot349$ (2), $M = 376\cdot22$, Z = 4, $D_x = 1\cdot297$, $D_m = 1\cdot302$ g cm⁻³. Torsion angles C(16)-C(17)-C(20)-O(20) and O(20)-C(20)-C(21)-O(21) are $-34\cdot70$ and $-3\cdot71^\circ$ respectively. Cohesion is the result of hydrogen bonds [O(3)...H-O(16) (2.690 Å), O(11)H...O(16) (2.819 Å)] and van der Waals interactions.

Introduction. La substitution d'un 16α H par la fonction hydroxyle diminue fortement l'activité minéralocorticoïde des stéroïdes actifs (Fried & Borman, 1958). Afin de connaître les effets de cette substitution, nous avons déterminé la conformation moléculaire de la 16α OH-prednisolone (tétrahydroxy- 11β , 16α , 17α , 21 pregnadiène-1,4 dione-3,20).

Les cristaux ont été obtenus par évaporation lente d'une solution du composé dans l'acétone; les dimensions du spécimen ayant servi à l'étude radiocristallographique étaient: $0,28 \times 0,35 \times 0,20$ mm. Les intensités ont été mesurées au moyen d'un diffractomètre automatique Hilger & Watts à quatre cercles. Parmi les 1939 réflexions mesurées, 1753 ont été considérées comme observées.

La structure a été résolue par méthode directe en utilisant le programme *MULTAN* de Germain, Main & Woolfson (1973).

L'ensemble des calculs du processus d'affinement a été réalisé au moyen des programmes d'Ahmed, Hall, Pippy & Saunderson (1967). La valeur R finale est égal à 5,0%.

Discussion. Les caractéristiques de la molécule sont reprises dans la Fig. 1 et dans les Tableaux 1, 2, 3 et 4.* Les longueurs des liaisons sont comparables aux autres dérivés de la prednisolone (Declercq, Germain & Van Meerssche, 1972; Dupont, Dideberg & Campsteyn, 1974; Dideberg, Dupont & Campsteyn, 1974). On

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 30462: 17 pp., 1 microfiche). Des copies peuvent être obtenues en s'adressant à The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, Angleterre.

Tableau 1. Coordonnées et paramètres d'agitation thermique ($\times 10^4$)

(a) Atomes non hydrogènes avec leurs déviations standards

	Х	Y	Ζ	B_{11}	B_{22}	B ₃₃	B ₂₃	B_{13}	B ₁₂
C(1)	4087 (4)	7547 (2)	7989 (4)	117 (4)	23 (1)	102 (5)	-5 (4)	32 (7)	11 (3)
C(2)	4548 (4)	8146 (2)	8115 (2)	128 (4)	25 (1)	118 (5)	-14(4)	6 (9)	11 (4)
C(3)	4312 (4)	8635 (2)	6901 (5)	135 (5)	22 (1)	143 (6)	-7(4)	30 (10)	-8(4)
C(4)	3520 (4)	8462 (2)	5606 (5)	122 (4)	21 (1)	142 (6)	10 (4)	22 (9)	19 (3)
C(5)	3056 (4)	7861 (2)	5456 (5)	87 (3)	23 (1)	137 (6)	-1(4)	20 (8)	23 (3)
C(6)	2308 (4)	7673 (2)	4057 (6)	100 (4)	27 (1)	188 (7)	-5(5)	- 55 (10)	39 (4)
C(7)	2926 (4)	7123 (2)	3106 (5)	89 (3)	26 (1)	134 (6)	2 (4)	- 58 (8)	33 (3)
C(8)	3303 (3)	6545 (2)	4166 (4)	57 (3)	22 (1)	120 (5)	0 (3)	-19 (6)	7 (3)
C(9)	4017 (3)	6793 (2)	5620 (4)	64 (3)	18 (1)	95 (4)	2 (3)	10 (6)	1 (2)
C(10)	3316 (3)	7319 (2)	6638 (4)	82 (3)	22 (1)	123 (5)	3 (4)	43 (7)	7 (3)
C(11)	4610 (3)	6251 (2)	6609 (4)	74 (3)	22 (1)	90 (4)	1 (3)	-6(7)	9 (3)
C(12)	5318 (3)	5771 (2)	5570 (4)	60 (3)	21 (1)	85 (4)	3 (3)	-18 (6)	2 (2)
C(13)	4607 (3)	5512 (2)	4143 (4)	52 (2)	20 (1)	93 (4)	-1(3)	-1(6)	-5(2)
C(14)	4108 (3)	6100 (2)	3204 (4)	55 (2)	22 (1)	87 (4)	3 (3)	-15(6)	5 (2)
C(15)	3637 (4)	5784 (2)	1656 (4)	80 (3)	28 (1)	117 (5)	-20(4)	-63(7)	25 (3)
C(16)	4461 (3)	5191 (2)	1354 (4)	72 (3)	23 (1)	96 (4)	-6(3)	-31(7)	3 (3)
C(17)	5359 (3)	5197 (2)	2770 (4)	53 (2)	20 (1)	94 (4)	1 (3)	-5 (6)	-1(2)
C(18)	3648 (3)	5031 (2)	4688 (5)	66 (3)	25 (1)	144 (6)	6 (4)	39 (7)	-15(3)
C(19)	2131 (4)	7061 (2)	7377 (6)	106 (4)	32 (1)	235 (9)	7 (6)	143 (11)	18 (4)
C(20)	5858 (3)	4526 (2)	3210 (4)	78 (3)	24 (1)	96 (4)	4 (3)	3 (6)	7 (3)
C(21)	7109 (4)	4511 (2)	3801 (5)	81 (4)	31 (1)	187 (7)	1 (5)	-49 (9)	27 (3)
O(3)	4788 (4)	9178 (2)	6973 (4)	241 (6)	27 (1)	213 (6)	23 (4)	- 58 (11)	- 52 (4)
O(11)	3720 (2)	5934 (1)	7543 (3)	98 (2)	28 (1)	107 (3)	34 (3)	52 (5)	15 (2)
O(16)	5059 (2)	5256 (1)	-139 (3)	104 (1)	26 (1)	92 (3)	-4 (3)	-5 (5)	14 (2)
O(17)	6341 (2)	5613 (1)	2407 (3)	55 (2)	25 (1)	131 (3)	2 (3)	22 (5)	-11 (2)
O(20)	5294 (3)	4028 (1)	3126 (4)	106 (3)	22 (1)	234 (6)	1 (3)	-37(7)	1 (2)
O(21)	7476 (3)	3886 (2)	4305 (4)	115 (3)	34 (1)	236 (6)	20 (4)	- 51 (8)	42 (3)

Tableau 1 (suite)

(b) Atomes hydrogènes

	x	У	Z
H(1)	427	718	890
H(2)	510	827	913
H(4)	331	884	474
H(61)	218	809	329
H(62)	145	750	448
H(71)	231	695	220
H(72)	369	733	253
H(8)	253	633	473
H(9)	483	702	521
H(11)	520	648	747
H(121)	610	602	514
H(122)	559	537	632
H(14)	486	638	278
H(151)	273	562	180
H(152)	369	612	65
H(16)	394	475	134
H(181)	325	487	357
H(182)	307	515	538
H(183)	415	463	520
H(191)	218	657	728
H(192)	205	720	863
H(193)	136	724	672
H(211)	720	484	481
H(212)	770	467	285
H(110)	425	573	848
H(160)	548	491	-76
H(170)	721	543	209
H(210)	682	360	407

note une variation significative des angles C(16)–C(17)– C(20) et C(16)–C(17)–O(17), qui valent respectivement 107,63 et 112,54° dans le fluoro-9 α méthyl-6 α prednisolone (Dideberg *et al.*, 1974). Le cycle *D* est fortement perturbé; il a la conformation C(13) enveloppe. [$\Delta = 35,5, \phi_m = 51,36$ (Altona, Geise & Romers, 1968).] Dans le Tableau 5, on trouve les contacts intermoléculaires les plus courts; l'empilement des molécules est représenté par la Fig. 2.

Fig. 1. Configuration de la molécule. Chaque atome (exceptés les H) est représenté par son ellipsoïde thermique à 50% de probabilité.

Fig. 2. Projection (100) de la structure.

Tableau 2. Longueurs des liaisons intramoléculaires

C(1) - C(2)	1,336 (5) Å
C(1) - C(10)	1,498
C(2) - C(3)	1,448
C(2) - C(4)	1,446
C(3) - O(3)	1,235
C(4) - C(5)	1,340
C(5) - C(6)	1,491
C(5) - C(10)	1,513
C(6) - C(7)	1,543
C(7) - C(8)	1,538
C(8) - C(9)	1,542
C(8) - C(14)	1,516
C(9) - C(10)	1,583
C(9) - C(11)	1,506
C(10) - C(19)	1,563
C(11) - C(12)	1,535
C(11)-O(11)	1,428
C(12) - C(13)	1,531
C(13) - C(14)	1,541
C(13) - C(17)	1,564
C(13)-C(18)	1,531
C(14) - C(15)	1,539
C(15)-C(16)	1,548
C(16)-C(17)	1,557
C(16)-O(16)	1,424
C(17) - C(20)	1,528
C(17)–O(17)	1,429
C(20) - C(21)	1,495
C(20)-O(20)	1,203
C(21) - O(21)	1,409

Tableau 3. Angles des liaisons intramoléculaires (°)

C(2) - C(1) - C(10)	124.76	C(12)-C(11)-O(11)	112.54
C(1) - C(2) - C(3)	120,44	C(11) - C(12) - C(13)	112.86
C(2) - C(3) - C(4)	117.91	C(12) - C(13) - C(14)	108.51
C(2) - C(3) - O(3)	120.39	C(12) - C(13) - C(17)	115.37
O(3) - C(3) - C(4)	121.70	C(12)-C(13)-C(18)	115,15
C(3) - C(4) - C(5)	122.34	C(14) - C(13) - C(17)	98,45
C(4) - C(5) - C(6)	122,02	C(14) - C(13) - C(18)	113,23
C(4) - C(5) - C(10)	122,33	C(17) - C(13) - C(18)	109,63
C(6) - C(5) - C(10)	115,56	C(13) - C(14) - C(8)	114,67
C(5) - C(6) - C(7)	109,63	C(8) - C(14) - C(15)	119,31
C(6) - C(7) - C(8)	112,93	C(13)-C(14)-C(15)	103,04
C(7) - C(8) - C(9)	110,12	C(14) - C(15) - C(16)	104,93
C(7) - C(8) - C(14)	108,82	C(15)-C(16)-C(17)	105,15
C(9) - C(8) - C(14)	107,60	C(15)-C(16)-O(16)	110,76
C(8) - C(9) - C(10)	112,71	C(17)-C(16)-O(16)	110,83
C(8) - C(9) - C(11)	114,35	C(16)-C(17)-C(13)	101,91
C(10)-C(9)-C(11)	114,81	C(13)-C(17)-C(20)	113,20
C(1) - C(10) - C(5)	112,06	C(13)–C(17)–O(17)	109,28
C(1) - C(10) - C(9)	108,99	C(16)-C(17)-C(20)	114,55
C(1) - C(10) - C(19)	107,71	C(16)–C(17)–O(17)	110,35
C(9) - C(10) - C(5)	104,12	C(20)-C(17)-O(17)	107,45
C(5) - C(10) - C(19)	109,83	C(17)-C(20)-C(21)	116,44
C(9) - C(10) - C(19)	114,19	C(17)-C(20)-O(20)	123,50
C(9) - C(11) - C(12)	112,67	C(21)-C(20)-O(20)	120,05
C(9) - C(11) - O(11)	108,37	C(20)-C(21)-O(21)	113,24

Tableau 4. Angles de torsion

Cycle A C(1)C(2) C(2)C(3) C(3)C(4) C(4)C(5) C(5)C(10) C(10)-C(1)	0,393,03-3,550,622,56-3,10
Cycle <i>B</i> C(5)—C(6) C(6)—C(7) C(7)—C(8) C(8)—C(9) C(9)—C(10) C(10)–C(5)	- 59,55 51,49 - 51,02 55,98 - 58,54 61,41
Cycle C C(8) - C(9) C(9) - C(11) C(11) - C(12) C(12) - C(13) C(13) - C(14) C(14) - C(8)	- 52,02 49,73 - 49,94 53,03 - 59,41 57,97

Tableau 4 (suite.)

Cycle D	
C(13) - C(14)	48,91
C(14) - C(15)	-31,21
C(15) - C(16)	0,58
C(16) - C(17)	29,60
C(17) - C(13)	-47,97

Tablea	iu 5.	Distances	intermol	lécul	laires	inf	'érieures d	à :	3,5/	Å

Notations: Dupont, Dideberg & Campsteyn (1972).

C(2)O(21)	4/101	3,484 (4) Å
C(11) - O(16)	1/001	3,431
C(15) - C(18)	2/011	3,481
C(15)-O(11)	1/001	3,449
C(21) - O(16)	2/110	3,348
C(21) - O(17)	2/110	3,491
O(3)—O(16)	4/100	2,690
O(11)-O(16)	1/001	2,819
O(16)-O(21)	$2/11\overline{1}$	3,320
O(17)-O(21)	2/11ī	3,088

Les auteurs remercient MM les Professeurs H. Brasseur & J. Toussaint pour l'intérêt qu'ils ont porté à ce travail, ainsi que M Vermeire pour l'étude préliminaire et la préparation de l'échantillon.

Références

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & SAUNDERSON, C. P. (1967). NRC Crystallographic Programs for the IBM 360 system. National Research Council, Ottawa, Canada.
- ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). Tetrahedron, 24, 13–32.
- DECLERCQ, J. P., GERMAIN, G. & VAN MEERSSCHE, M. (1972). Cryst. Struct. Commun. 1, 5.
- DIDEBERG, O., DUPONT, L. & CAMPSTEYN, H. (1974). Acta Cryst. B30, 702–710.
- DUPONT, L., DIDEBERG, O. & CAMPSTEYN, H. (1972). Acta Cryst. B28, 3023–3032.
- DUPONT, L., DIDEBERG, O. & CAMPSTEYN, H. (1974). Acta Cryst. B30, 514–516.
- FRIED, J. & BORMAN, A. (1958). Vitam. Horm. 16, 303-374.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1973). Acta Cryst. A29, 231-234.

Acta Cryst. (1974). B30, 2066

4-Bromo-2,3-dicarbomethoxy-2-cyclohepten-1-one

By J. L. Atwood, M. D. Williams, R. H. GARNER AND E. J. CONE

Department of Chemistry, University of Alabama, University, Alabama 35486, U.S.A.

(Received 27 December 1973; accepted 30 April 1974)

Abstract. $C_{11}H_{13}O_5Br$, monoclinic, $P2_1/c$, a=8.177 (2), $D_m=1.61$, $D_c=1.61$ g cm⁻³. Full-matrix least-squares b=13.674 (3), c=11.265 (3) Å, $\beta=91.48$ (2)°, Z=4, refinement gave a final $R_1=0.036$ for 2028 independent